

Theory Reach of BigBOSS

with comparison to JDEM-PS and BigBOSS variations

Eric Linder

18 November 2009

based on "Testing Standard Cosmology with Large Scale Structure"

Arthur Stril, Robert Cahn, Eric Linder arXiv:0910.1833, MNRAS submitted

Cosmic Structure

Galaxy 3D distribution or power spectrum contains information on:

- Growth evolving amplitude
- Matter/radiation density, H peak turnover
- Distances Baryon acoustic oscillations
- Growth rate redshift space distortions
- Neutrino mass, non-Gaussianity, gravity, etc.

BigBOSS: it's not a BAO survey, it's a Cosmic Structure survey.

Data, Data, Data

As wonderful as the CMB is, it's 2-dimensional.

The number of modes giving information is *l(l+1)* or ~10 million.

BOSS (SDSS III) will map 400,000 linear modes.

BigBOSS will map 15 million linear modes.

Information increases as k^3 not l^2 . If we can understand beyond the linear regime...

Testing Cosmology with Structure

$$P(k, \mu) = (b + f\mu^2)^2 P_{\text{lin}}(k)$$

Galaxy bias $\delta_g = b \, \delta_m$

Growth
$$P_{\text{lin}}(k) = \left\langle \left(\frac{\delta \rho}{\rho} \right)_k^2 \right\rangle \sim D^2(a)$$

Redshift anisotropy $\mu = k_{\parallel}/k$

Growth rate
$$f = \frac{d \ln D}{d \ln a} \sim \Omega_m(a)^{\gamma}$$

Cosmological parameters affect D(a), $\Omega_m(a)$

Gravity characterized by growth index γ .

$$D(a) \approx a \exp \left\{ \int_0^a d \ln a \left[\Omega_m(a)^{\gamma} - 1 \right] \right\}$$

Testing Cosmology with Structure

The most growth occurs the latest, i.e. low z. The growth rate $f=\Omega_m(a)^{\gamma}$ also most sensitive at low z.

Can we do power spectrum (including BAO) measurements from the ground, rather than space? How does BigBOSS stack up against "JDEM-PS"?

Must include main physics affecting growth:

 γ - Gravity theory (test GR - γ_{DE} =0.55-0.56)

w₀, w_a - Dark energy effects on expansion history

m_v - Neutrino mass (free stream/anticlustering)

Survey Comparison

	BigBOSS	LRG^a	EL
	z range	0 - 1	1 - 2
	$\Omega_{\rm sky}~({\rm deg}^2)$	24000	24000
	$\bar{n} (h/\mathrm{Mpc})^3$	3.4×10^{-4}	3.4×10^{-4}
	b	1.7	0.8 - 1.2
	R	≥ 2300	≥ 2300
	JDEM-PS	LRG^a	EL
galaxy redshift	z range	$\begin{array}{c} \text{LRG}^a \\ 0 - 0.7 \end{array}$	EL $0.7-2$
galaxy redshift survey			
galaxy redshift survey	z range	0 - 0.7 10000	0.7 - 2 20000
	z range $\Omega_{\rm sky}~({ m deg}^2)$	0 - 0.7 10000	0.7 - 2 20000

TABLE I: Survey specifications for the Stage IV experiments BigBOSS and JDEM-PS. ^aUses northern hemisphere (10000 \deg^2) LRG z = 0 - 0.7 from BOSS [25].

Does not include QSO part of BigBOSS.

Will later consider variations on baseline BigBOSS.

Multiple Probes

Multiple techniques are not just a good idea, they are essential.

Global correlation coefficient measures total degeneracy.

$$r_i = \sqrt{1 - \frac{1}{F_{ii} (F^{-1})_{ii}}}$$

$$r_{\text{BigBoss}} = \begin{pmatrix} 0.9954 \\ 0.9943 \\ 0.9911 \\ 0.9933 \\ 0.9893 \\ 0.9893 \\ 0.9990 \\ 0.9997 \\ 0.9996 \end{pmatrix}; r_{\text{JDEM-PS}} = \begin{pmatrix} 0.9970 \\ 0.9608 \\ 0.9960 \\ 0.9908 \\ 0.9895 \\ 0.9988 \\ 0.9997 \\ 0.9996 \end{pmatrix}$$

TABLE IV: Vectors of the global correlation coefficients for the parameters $(\gamma, b_{LRG}, b_{EL}, \Omega_{DE}, \Omega_{\nu}, \omega_b, h, w_0, w_a)$ for Big-BOSS and JDEM-PS.

Strongest complementarity is with Supernovae, especially if fiducial is not ACDM.

Cosmology Fit

9 parameter fit, Fisher matrix estimation.

Includes key parameters affecting growth.

- 1. $\gamma = 0.55$, gravitational growth index
- 2. b_{LRG} , the bias for LRG (see Table I)
- 3. b_{EL} , the bias for EL (see Table I)
- 4. $\Omega_{DE} = 0.744$, dark energy density today
- 5. $\Omega_{\nu} = 0.002$, massive neutrino energy density today
- 6. $\omega_b = \Omega_b h^2 = 0.0227$, reduced baryon energy density today
- 7. $h = H_0/(100 \text{ km/s/Mpc}) = 0.719$, reduced Hubble constant
- 8. $w_0 = -0.99$, dark energy equation of state today
- 9. $w_a = 0$, dark energy equation of state time variation

Testing Standard Cosmology

9 parameter fit Stril!

BigBOSS can test GR $\gamma = 0.55 \pm 0.03$

Good complementarity with SN, WL, CMB on dark energy.

As good as space!

N.B. Ignoring neutrino mass overestimates constraint power by a factor of 3-4.

Ground vs. Space

As good as space!

BigBOSS is superior to JDEM-PS in testing gravity:

BigBOSS JDEM-PS | BigBOSS+III JDEM-PS+III
$$σ(γ) = 0.043$$
 0.054 0.031 0.038

BigBOSS is superior/comparable to JDEM-PS in testing all dark cosmology:

FOM Ground/Space confidence contour inverse-area ratio

	${ m BigBOSS/JDEM-PS}$	$BigBOSS_{+III}/JDEM-PS_{+III}$
$\gamma, \Omega_{\mathrm{DE}}$	0.93	0.99
γ, w_0	1.16	1.20
γ, w_a	1.21	1.23
w_0, w_a	0.88	0.86

Nonlinear Regime

Remember the k³ advantage in number of modes. We need to understand beyond the nonlinear power spectrum.

For BAO aspects, see Padmanabhan & White 0906.1198, Seo et al. 0910.5005

Nonlinearities affect redshift anisotropies (b+ $f\mu^2$)² factor from large scale velocities, and damping factor from small scale anisotropies.

Cutoff:
$$P_{nl}(k,\mu) = P(k,\mu) \Theta(k_{+} - k)$$

Gaussian: $P_{nl}(k,\mu) = P(k,\mu) e^{-(k/k_{+})^{2}\mu^{2}}$
Lorentzian: $P_{nl}(k,\mu) = \frac{P(k,\mu)}{1 + (k/k_{+})^{2}\mu^{2}}$

Case	$\operatorname{BigBOSS}$	JDEM-PS	
Cutoff	0.043	0.054	
Gaussian	0.024	0.026	
Lorentzian	0.019	0.021	
	$\sigma(\gamma)$		

Nonlinear Regime, non-ACDM

Matt Francis studied BAO scale and P_k in Early DE models with N-body simulations.

Redshift Range

Since D(a), $f=\Omega_m(a)^\gamma$ strengthen at lower redshift, consider BigBOSS variation: emission line galaxy sample at z=0.7-1.7 rather than z=1-2.

This would reduce technical complexity (NIR detectors) and line confusion.

Result: No harm, and even ~10% improvement in cosmology estimation (γ, w_0, w_a) .

Overlap with LRG allows extra gain for higher n.

 z_{EL} =[0.7,1.7] vs. z_{EL} =[1,2] has $\sigma(\gamma)$ =0.0398 vs. 0.0435

w₀-w_a FOM improves by 6%

Redshift Range

z_{EL} =[0.7,1.7] improves by 9% in γ , w_a and 14% in w_0 .

Number Density

With shifted redshift window giving better S/N could trade for higher number density.

Trade Study: consider 4 x n_{ELG} for z=0.7-1.

(Motivated by Seljak's sample variance suppression for nP>1 with multi-bias sample)

Results: 2-4% further gain on $\sigma(\gamma)$, $\sigma(w_0)$, $\sigma(w_a)$.

However, worth exploring for other n-z combinations or other ways of using time saved.

Summary

BigBOSS is more than BAO. It provides an excellent test of gravity (γ), and strong complementarity with other dark energy missions.

Very important to simultaneously fit expansion (w_0, w_a) , neutrino mass (m_v) , gravity (γ) .

As good as space JDEM-PS! (and this is before including BigBOSS' Ly α data).

Redshift range z=0.2-1.7 very strong, retires risk and cost.

Ready for detailed trades on galaxy number density and redshift.